...A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em que procurava abstrair a natureza por meio de processos de determinação de quantidades.

...E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos. E é sobre eles que passamos a dissertar.
...Conjunto dos Números NaturaisComo decorrência da necessidade de contar objetos surgiram os números naturais que é simbolizado pela letra N e é formado pelos números 0, 1, 2, 3, …, ou seja:
N = {0; 1; 2; 3; …}
Um subconjunto de N muito usado é o conjunto dos números naturais menos o zero, ou seja N - {0} = conjuntos dos números naturais positivos, que é representado por N*.

Observações:
Em N são definidas apenas as operações de adição e multiplicação;
Isto é fato pois se a e b são dois números naturais então a + b e a.b são também números naturais. Esta propriedade é conhecida como fechamento da operação;
Valem as propriedades associativa, comutativa e elemento neutro (0 para a adição e 1 para a multiplicação) para as duas operações e a distributiva para a multiplicação em N.
Como consequência, surge um novo conjunto para atender essa necessidade.
...Conjunto dos Números InteirosChama-se o conjunto dos números inteiros, representado pela letra Z, o seguinte conjunto:
Z = {…, -3; -2; -1; 0; 1; 2; 3; …}

No conjunto Z distinguimos alguns subconjuntos notáveis que possuem notação própria para representá-los:
Conjunto dos inteiros não negativos: Z+ = {0; 1; 2; 3; …};
Conjunto dos inteiros não positivos: Z- = {…; -3; -2; -1; 0};
Conjunto dos inteiros não nulos: Z* = {…, -3; -2; -1; 1; 2; 3; …};
Conjunto dos inteiros positivos Z+* = {1; 2; 3; …};
Conjunto dos inteiros negativos Z-* = {…; -3; -2; -1}.
Note que Z+ = N e, por essa razão, N é um subconjunto de Z.

Observações:
No conjunto Z, além das operações e suas propriedades mencionadas para N, vale a propriedade simétrico ou oposto para a adição. Isto é: para todo a em Z, existe -a em Z, de tal forma que a + (-a) = 0;
Devido a este fato podemos definir a operação de subtração em Z: a - b = a + (-b) para todo a e b pertencente a Z;
Note que a noção de inverso não existe em Z. Em outras palavras, dado q pertencente a Z, diferente de 1 e de -1, 1/q não existe em Z;
...Os números inteiros podem ser representados por pontos de uma reta orientada ou eixo, onde temos um ponto de origem, o zero, e à sua esquerda associam-se ordenadamente os inteiros negativos e à sua direita os inteiros positivos, separados por intervalos de mesmo comprimento;
...Em Z podemos introduzir o conceito de módulo ou valor absoluto: |x| = x se x >= 0 e |x| = -x se x < 0, para todo x pertencente a Z. Como decorrência da definição temos que |x| >= 0 para qualquer número inteiro.
...Conjunto dos Números RacionaisO conjunto dos números racionais, simbolizado pela letra Q, é o conjunto dos números que podem ser escritos na forma de uma fração p/q, com p e q inteiros quaisquer e q diferente de zero:

...Como todo número inteiro pode ser escrito na forma p/1, então Z é um subconjunto de Q. Valem também para o conjuntos dos números racionais as notações Q* (conjunto dos números racionais não nulos), Q+ (conjunto dos números racionais não negativos) e Q- (conjunto dos números racionais não positivos).
Observações:
São válidas todas as propriedades vistas para o conjunto dos números inteiros;
Além disso é válida a propriedade simétrico ou inverso para a multiplicação. Isto é, para todo a/b pertencente a Q,
...a/b diferente de zero,
...existe b/a em Q tal que (a/b)(b/a) = 1;
Decorre da propriedade acima que é possível definir a operação de divisão em Q* da seguinte forma (a/b):(c/d) = (a/b).(d/c), para quaisquer a, b, c e d pertencente a Q;
Todo número racional p/q pode ser escrito como um número decimal exato (ex: 1/2 = 0,5) ou como uma dízima periódica (1/3 = 0,333…).
Números IrracionaisComo o próprio nome sugere um número irracional é todo número não racional, isto é, todo número que não pode ser escrito na forma de uma fração p/q, onde p e q são inteiros e q diferente de zero.

São exemplos de números irracionais a raiz quadrada de 2 e a raiz cúbica de 3, ou seja, nenhum deles pertence a Q.
A título de ilustração vamos demonstrar, pela teoria do absurdo, que a raiz quadrada de 2 não pertence a Q.
Suponhamos que raiz quadrada de 2 é racional e admitamos que possa ser escrita como uma fração irredutível a/b, b diferente de zero:

Da expressão acima concluímos que a ao quadrado é par e que, portanto, a é par. Logo a = 2m, com m inteiro. Substituindo o valor de a na expressão anterior vem que:

Da mesma forma obtemos que b também é par, o que é um absurdo pois a/b é irredutível, ou seja, a e b são primos entre si, e portanto têm como divisor comum apenas o número 1, isto é, mdc(a,b) = 1.
Caso deseje obter maiores informações sobre as operações com números irracionais consulte os artigos publicados no blog na categoria Matemática.
...Conjunto dos Números ReaisO conjunto dos números reais, simbolizado pela letra R, é o formado por todos os números racionais e por todos os números irracionais:
R = {x | x é racional ou x é irracional}
Desse modo todos os conjuntos numéricos (N, Z e Q), bem como o conjunto dos números irracionais são subconjuntos de R.
Da mesma forma destacamos três outros subconjuntos de R: R* = conjunto dos reais não nulos, R+ = conjunto dos reais não negativos e R- = conjunto dos reais não positivos.

Referências:
Fundamentos de Matemática Elementar, Gelson Iezzi, Osvaldo Dolce & Carlos Murakami, São Paulo, Atual Editora Ltda, edição 1977;
Matemática para o Ensino Médio: Volume Único, Manoel Jairo Bezerra, São Paulo, Editora Scipione, 2001.