... A entrega será em folha almaço com letra legível(manuscrito) acompanhado de imagens.
domingo, 10 de abril de 2011
Trabalho de Matemática 1ºs EFGH ... 2011
... Assista os vídeos e faça um resumo explicativo dos conjuntos relacionados
... A entrega será em folha almaço com letra legível(manuscrito) acompanhado de imagens.
... A entrega será em folha almaço com letra legível(manuscrito) acompanhado de imagens.
quinta-feira, 7 de abril de 2011
Conjuntos Numéricos (1ºs EFGH..2011)
...A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em que procurava abstrair a natureza por meio de processos de determinação de quantidades.
...E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos. E é sobre eles que passamos a dissertar.
...Conjunto dos Números Naturais
Como decorrência da necessidade de contar objetos surgiram os números naturais que é simbolizado pela letra N e é formado pelos números 0, 1, 2, 3, …, ou seja:
N = {0; 1; 2; 3; …}
Um subconjunto de N muito usado é o conjunto dos números naturais menos o zero, ou seja N - {0} = conjuntos dos números naturais positivos, que é representado por N*.
Observações:
Em N são definidas apenas as operações de adição e multiplicação;
Isto é fato pois se a e b são dois números naturais então a + b e a.b são também números naturais. Esta propriedade é conhecida como fechamento da operação;
Valem as propriedades associativa, comutativa e elemento neutro (0 para a adição e 1 para a multiplicação) para as duas operações e a distributiva para a multiplicação em N.
Como consequência, surge um novo conjunto para atender essa necessidade.
...Conjunto dos Números Inteiros
Chama-se o conjunto dos números inteiros, representado pela letra Z, o seguinte conjunto:
Z = {…, -3; -2; -1; 0; 1; 2; 3; …}
No conjunto Z distinguimos alguns subconjuntos notáveis que possuem notação própria para representá-los:
Conjunto dos inteiros não negativos: Z+ = {0; 1; 2; 3; …};
Conjunto dos inteiros não positivos: Z- = {…; -3; -2; -1; 0};
Conjunto dos inteiros não nulos: Z* = {…, -3; -2; -1; 1; 2; 3; …};
Conjunto dos inteiros positivos Z+* = {1; 2; 3; …};
Conjunto dos inteiros negativos Z-* = {…; -3; -2; -1}.
Note que Z+ = N e, por essa razão, N é um subconjunto de Z.
Observações:
No conjunto Z, além das operações e suas propriedades mencionadas para N, vale a propriedade simétrico ou oposto para a adição. Isto é: para todo a em Z, existe -a em Z, de tal forma que a + (-a) = 0;
Devido a este fato podemos definir a operação de subtração em Z: a - b = a + (-b) para todo a e b pertencente a Z;
Note que a noção de inverso não existe em Z. Em outras palavras, dado q pertencente a Z, diferente de 1 e de -1, 1/q não existe em Z;
...Os números inteiros podem ser representados por pontos de uma reta orientada ou eixo, onde temos um ponto de origem, o zero, e à sua esquerda associam-se ordenadamente os inteiros negativos e à sua direita os inteiros positivos, separados por intervalos de mesmo comprimento;
...Em Z podemos introduzir o conceito de módulo ou valor absoluto: |x| = x se x >= 0 e |x| = -x se x < 0, para todo x pertencente a Z. Como decorrência da definição temos que |x| >= 0 para qualquer número inteiro.
...Conjunto dos Números Racionais
O conjunto dos números racionais, simbolizado pela letra Q, é o conjunto dos números que podem ser escritos na forma de uma fração p/q, com p e q inteiros quaisquer e q diferente de zero:
...Como todo número inteiro pode ser escrito na forma p/1, então Z é um subconjunto de Q. Valem também para o conjuntos dos números racionais as notações Q* (conjunto dos números racionais não nulos), Q+ (conjunto dos números racionais não negativos) e Q- (conjunto dos números racionais não positivos).
Observações:
São válidas todas as propriedades vistas para o conjunto dos números inteiros;
Além disso é válida a propriedade simétrico ou inverso para a multiplicação. Isto é, para todo a/b pertencente a Q,
...a/b diferente de zero,
...existe b/a em Q tal que (a/b)(b/a) = 1;
Decorre da propriedade acima que é possível definir a operação de divisão em Q* da seguinte forma (a/b):(c/d) = (a/b).(d/c), para quaisquer a, b, c e d pertencente a Q;
Todo número racional p/q pode ser escrito como um número decimal exato (ex: 1/2 = 0,5) ou como uma dízima periódica (1/3 = 0,333…).
Números Irracionais
Como o próprio nome sugere um número irracional é todo número não racional, isto é, todo número que não pode ser escrito na forma de uma fração p/q, onde p e q são inteiros e q diferente de zero.
São exemplos de números irracionais a raiz quadrada de 2 e a raiz cúbica de 3, ou seja, nenhum deles pertence a Q.
A título de ilustração vamos demonstrar, pela teoria do absurdo, que a raiz quadrada de 2 não pertence a Q.
Suponhamos que raiz quadrada de 2 é racional e admitamos que possa ser escrita como uma fração irredutível a/b, b diferente de zero:
Da expressão acima concluímos que a ao quadrado é par e que, portanto, a é par. Logo a = 2m, com m inteiro. Substituindo o valor de a na expressão anterior vem que:
Da mesma forma obtemos que b também é par, o que é um absurdo pois a/b é irredutível, ou seja, a e b são primos entre si, e portanto têm como divisor comum apenas o número 1, isto é, mdc(a,b) = 1.
Caso deseje obter maiores informações sobre as operações com números irracionais consulte os artigos publicados no blog na categoria Matemática.
...Conjunto dos Números Reais
O conjunto dos números reais, simbolizado pela letra R, é o formado por todos os números racionais e por todos os números irracionais:
R = {x | x é racional ou x é irracional}
Desse modo todos os conjuntos numéricos (N, Z e Q), bem como o conjunto dos números irracionais são subconjuntos de R.
Da mesma forma destacamos três outros subconjuntos de R: R* = conjunto dos reais não nulos, R+ = conjunto dos reais não negativos e R- = conjunto dos reais não positivos.
Referências:
Fundamentos de Matemática Elementar, Gelson Iezzi, Osvaldo Dolce & Carlos Murakami, São Paulo, Atual Editora Ltda, edição 1977;
Matemática para o Ensino Médio: Volume Único, Manoel Jairo Bezerra, São Paulo, Editora Scipione, 2001.
Exercícios sobre Conjuntos (1ºs EFGH..2011)
1) Utilizando os símbolos ⊂ ou ⊄, relacione os conjuntos:
e)Quantos motociclistas foram entrevistados ?
A={x| x é sigla da região nordeste do Brasil },
B = { PE, AL, SE, RN} e
C ={ ES, BA, RJ}, responda:
B = { PE, AL, SE, RN} e
C ={ ES, BA, RJ}, responda:
a) A ___ B b) B ___ A c) A ___ C
d) C ___ A e) C ___ B f) B ___ C
2) Avalie o diagrama e escreva:
3) A loja de brinquedos, Ri Happy, realizou umapesquisa com bonecas e obteve as seguintes respostas : 92 meninas gostam da Barbie, 84 gostam da Susi, 76 gostam da Polly, 36 gostam da Barbie e Susi, 45 gostam da Barbie e Polly, 32 gostam da Susi e Polly e 15 gostam das três . Responda:
d) C ___ A e) C ___ B f) B ___ C
2) Avalie o diagrama e escreva:
a) A U B b) B ∩ A
c) A ∩ C d) C ∩ A ∩ B
e) C U B U A f) (B U C) ∩ A
g) (B ∩ A) U C h) (A U C) ∩ B
3) A loja de brinquedos, Ri Happy, realizou uma
a) Qual o número de meninas entrevistadas?
b) Quantas gostam apenas da boneca Susi?
b) Quantas gostam apenas da boneca Susi?
c) Quantas gostam de pelo menos duas bonecas ?
d) Quantas gostam somente de duas bonecas ?
e) Quantas gostam de um só tipo de boneca ?
4) A Revista Duas Rodas pesquisou sobre a preferência de motos e obteve as seguintes respostas : 864 pessoas adoram motos Harley Davidson, 126 gostam das motos BMW, 74 gostam da Triumph, 42 opinaram por Harley e Triumph, 38 opinaram por BMW e Triumph, 62 opinaram por Harley e BMW e 18 opinaram pelas três marcas .
Responda:
a) Quantos motociclistas gostam apenas de Harley Davidson ?
b) Quantos motociclistas gostam apenas de BMW ?
Responda:
a) Quantos motociclistas gostam apenas de Harley Davidson ?
b) Quantos motociclistas gostam apenas de BMW ?
c) Quantos motociclistas opinaram somente por uma marca ?
d) Quantos motociclistas opinaram por pelo menos duas marcas ?
Assinar:
Postagens (Atom)